

Multilayer Clustered Sampling Technique (MLCS) for Near-Earth Asteroid Impact Hazard Assessment

Javier Roa and Davide Farnocchia

Impact Hazard Assessment

Introduction

OBSERVATIONS

ASTROMETRY

ORBIT FIT

HAZARD ASSESS.

Date	R.A.	Dec.
2019-01-14.53	23.5	30.0
2019-01-14.54	23.4	30.1
2019-01-14.55	23.3	30.2

- Small probability (~10⁻⁷).
- Distribution not necessarily Gaussian.
- Planetary encounters → Strongly nonlinear.
- To be implemented into an automatic system (Sentry).
- No human interaction.

Rare Event Detection

The failure region needs not be connected!

MLCS

Multi-Layer Clustered Sampling

Locating **F**

$$P = \frac{N_{\text{impacts}}}{N_{\text{samples}}}$$

If P is small $\Rightarrow \mathcal{F}$ is small. Locate a small subset of i.cs.

MLCS

- As accurate as Monte Carlo sampling.
- The smaller P, the greater the speedup.
- No need for proposal distributions.

MLCS II

Multi-Layer Clustered Sampling

MLCS Algorithm

- 1. Sample layers
- 2. Evaluate $f(\mathbf{x})$ on layer 1.
- 3. Check convergence.
- 4. Select top *p*-percentile.
- 5. Cluster points.
- 6. Advance to the next layer.
- 7. Repeat 3-6 until converged.

© 2019 California Institute of Technology. Government sponsorship acknowledged.

Dynamical Regimes

Clustering in orbital-element space

Orbital Elements

The uncertainty of the semimajor axis tends to dominate the failure region

Physical Parameters

The uncertainty of other physical parameters might play an even more important role

Semimajor axis

Example I 2017 RH16

- ×10 Speedup (adaptive)
- ×1211 Speedup (absolute)

×276 Speedup (adaptive)

×276 Speedup (absolute)

Example II 2013 YB

×33 Speedup (adaptive)×131 Speedup (absolute)

 $P = 2.1 \times 10^{-5} (2024 - \text{Dec} - 23)$

×35 Speedup (adaptive)

×130 Speedup (absolute)

Example III 2018 UM1

$$P = 1.4 \times 10^{-6} (2095 \text{-Jun} - 09.08)$$

$$P = 1.8 \times 10^{-5} (2095 \text{-Jun} - 09.39)$$

$$P = 1.6 \times 10^{-5} (2095 \text{-Jun} - 09.40)$$

×15 Speedup (adaptive)

×61 Speedup (absolute)

Example IV (99942) Apophis

Example IV

(99942) Apophis

2068 Close Approach

- Strongly nonlinear due to 2029 close approach.
- Driven by the Yarkovsky effect.
- Linearized methods fail.

×12 Speedup (adaptive)

×12 Speedup (absolute)

Conclusions

MLCS as a generic algorithm

- 1. MLCS is an efficient alternative to Monte Carlo sampling:
 - Retains accuracy.
 - Significant speedups, especially for estimating low probabilities.
- 2. No assumptions about the uncertainty distribution.
- 3. No dynamical assumptions/simplifications.

MLCS for impact monitoring

- 1. Fully nonlinear.
- 2. Handles any source of perturbation.
- Separates individual Virtual Impactors thanks to clustering.
- 4. Requires no human interaction (adequate for automatic systems).
- 5. Handles uncertain physical parameters.

"MLCS is an efficient alternative to Monte Carlo sampling"

javier.roa@jpl.nasa.gov